Posterior concentration rates for empirical Bayes procedures with applications to Dirichlet process mixtures

نویسندگان

  • SOPHIE DONNET
  • VINCENT RIVOIRARD
  • JUDITH ROUSSEAU
چکیده

We provide conditions on the statistical model and the prior probability law to derive contraction rates of posterior distributions corresponding to data-dependent priors in an empirical Bayes approach for selecting prior hyper-parameter values. We aim at giving conditions in the same spirit as those in the seminal article of Ghosal and van der Vaart [23]. We then apply the result to specific statistical settings: density estimation using Dirichlet process mixtures of Gaussian densities with base measure depending on data-driven chosen hyper-parameter values and intensity function estimation of counting processes obeying the Aalen model. In the former setting, we also derive recovery rates for the related inverse problem of density deconvolution. In the latter, a simulation study for inhomogeneous Poisson processes illustrates the results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropies and Rates of Convergence for Maximum Likelihood and Bayes Estimation for Mixtures of Normal Densities

We study the rates of convergence of the maximum likelihood estimator (MLE) and posterior distribution in density estimation problems, where the densities are location or location-scale mixtures of normal distributions with the scale parameter lying between two positive numbers. The true density is also assumed to lie in this class with the true mixing distribution either compactly supported or...

متن کامل

Nonparametric empirical Bayes for the Dirichlet process mixture model

The Dirichlet process prior allows flexible nonparametric mixture modeling. The number of mixture components is not specified in advance and can grow as new data come in. However, the behavior of the model is sensitive to the choice of the parameters, including an infinite-dimensional distributional parameter G0. Most previous applications have either fixed G0 as a member of a parametric family...

متن کامل

Posterior Convergence Rates of Dirichlet Mixtures at Smooth Densities

We study the rates of convergence of the posterior distribution for Bayesian density estimation with Dirichlet mixtures of normal distributions as the prior. The true density is assumed to be twice continuously differentiable. The bandwidth is given a sequence of priors which is obtained by scaling a single prior by an appropriate order. In order to handle this problem, we derive a new general ...

متن کامل

2 The Dirichlet process , related priors and posterior asymptotics

Here we review the role of the Dirichlet process and related prior distribtions in nonparametric Bayesian inference. We discuss construction and various properties of the Dirichlet process. We then review the asymptotic properties of posterior distributions. Starting with the definition of posterior consistency and examples of inconsistency, we discuss general theorems which lead to consistency...

متن کامل

Generalized Species Sampling Priors with Latent Beta reinforcements

Many popular Bayesian nonparametric priors can be characterized in terms of exchangeable species sampling sequences. However, in some applications, exchangeability may not be appropriate. We introduce a novel and probabilistically coherent family of non-exchangeable species sampling sequences characterized by a tractable predictive probability function with weights driven by a sequence of indep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016